

EV Charging and Travelling Basics

Disclaimer: The Vic Branch of the AEVA has tried to ensure all information is correct. However, as individual circumstances vary, it is important that you undertake your own research to best cater for your situation and preferences.

AEVA Vic Branch July 2023

secretary@vic.aeva.asn.au

AC Charging

Using Standard Power Points (Trickle Charging)

Every normal power point is a potential charging point. Between 80% and 90% of all charging is done at home or at work using standard 10amp or 15amp power points. Overnight charging for 12 hours at 15 amps usually tops up the battery sufficiently for a long trip the next day.

Male 10amp	Male 15amp	15amp charging cable with male 15amp				
3 Pin Plug	3 Pin Plug	3 pin plug and female Type 2 plug for				
	(large earth pin)	plugging into the car				

Using Faster AC Charging

For a single phase electrical system, a wall charger can be installed which charges at 32 amps delivering 7.2kW (see overleaf for units and charging rates).

Destination wall chargers at public facilities, shopping centres, hotels or wineries are similar and are often untethered.

Tethered Wall Charger (lead provided) Untethered Wall Charger plugs (required for untethered (no lead provided) supplies)

Properties with a 3 phase electrical system can install a wall charger which is 3 times faster than those with single phase (ie 22kW). However, this cannot currently be fully utilised as most EV cars now available in Australia have a maximum AC charging rate between 7kW and 11kW (see AEVA Fact Sheets).

DC Fast Charging

Stopping to recharge on a long day trip is done at DC fast charging stations. Some DC fast chargers are 25kW but the majority are between 50kW and 350kW. Check using the Plugshare site (link below) or charging network operator sites. For Tesla owners, the Tesla charging network is extensive, user friendly and reliable. Planning ahead is often required, especially the first time a particular journey is undertaken.

Chargefox Euroa DC 50kW chargers on the right. DC 350kW chargers on the left. All have a choice of CCS Type 2 or CHAdeMO tethered leads.

		Almost all EV cars currently on sale in in Australia are fitted with CCS Type 2 plugs and have a maximum DC charging rate between 40kW and 270kW. (see AEVA Fact Sheets) Owners of cars with plugs other than
Female CCS Type 2	Female CHAdeMO	ccs rype z and chadewid need to
Plug	Plug	carry adaptors.

Important Recommendation – Whether you use 10amps, 15amps or a wall charger, it is recommended that you have a qualified electrician install a dedicated circuit for your car charging point. This is due to the high volumes of energy involved.

Understanding Range and Planning a Trip						Other Useful Inf					
	Ter	minology an	d Units					N	laint	aining the	e C
Electrical Energy	Kilowa	ntt hour k	Wh		•	No	ormal pra	actice is	to rest	rict charging to	o be
Electrical Power	Kilowa	itt k	W		•	Tr	ickle cha	rging to	100% i	s allowable iu	stp
Using 3kW of power	r for 2 hours	uses 6 kWh of electri	cal energy.		•	Fa	st and fre	auent D(C chargi	ng can affect lo	ngt
Charging at 3 kW fo	r 2 hours sto	res 6 kWh of electrica	al energy in a ba	attery.	•	Fo	r courtes	v and bat	ttery lor	ngevity, stop DC) fas
Energy Consumpti	on Petrol	Litres per 100 kilome	etre	L/100km					Ting	for Dlan	nir
Energy Consumpti	on Electric	Kilowatt hours per 10	00 kilometre	kWh/100km					rips		
	Theoret	ical Range Ca	alculatior	า	•	Dr Or	iving style nce a trip	e, road ai has succe	nd weat essfullv	her conditions: been complete	can d. tł
Hyundai Kona	Speed	Consumption	Full Range (64	4 kWh Battery)	•	At	busy time	es there	, may be	queues at fast	, chai
City Driving	60-80 km/	h 12 kWh/100km	64/12*10)0 = 533 km	•	Ca	ravan pai	ks have	15amp	power points oi	n th
Highway Driving	100 km/h	15 kWh/100km	64/15*10)0 = 426 km	•	Pla	anning is o	essential	when t	ravelling to rem	iote
When undertaking a	Actua a trip, the bat	al Range Calc	ulation	parture and shou	• Id	ex It (Re	tra adapt can be be ducing sp	ors (depe tter to cl beed redu	ending o narge m uces ene	on the power po ore often (4 tin ergy consumption	oints nes on t
normally not be allo	wed to go be	elow ten or twenty pe	ercent capacity	. To guarantee					Tin	ne Taken	to
sufficient range and	to maximize	battery life (see Mai	ntaining the Ca	r Battery) drivers				Amps	kW	Add 25kWh	Α
may need to include	e a safety ma	rgin. For some model	ls, this may me	an lowering your	A	C	Trickle	10	2.4	10.4 hrs	2
expectations by 20	or 25 percent	t.				Ī	Trickle	15	3.3	7.6 hrs	1
Thus, for the Hyund	ai Kona the s	ensible highway rang	e with a full ba	ittery is 320 - 350	km	Ī		32	7.2	3.5 hrs	7
and is 250 – 280km	with an 80%	battery.			D	C			25	1 hr	2
						Γ	Fast		50	30 minutes	1

Using the Car's Range Meter

These are sometimes unreliable and can overestimate your range. At the beginning, it is probably wise to deduct 25% (as described above) from the range shown on the range meter. Your range estimations and confidence will improve as you gain experience with your particular model, different driving conditions and your driving style. It is important to know where you will stop to recharge if the range meter predicts that the battery charge will drop to an unacceptable level.

Planning a Trip

When undertaking a long day trip, the location and status of fast charging stations and the distance between them must be researched. Plugshare is a free website which shows most charging stations, their details and status. Fast charging network operators have sites and apps which show locations, details and status of the stations and chargers on their network. For some EVs, onboard software will direct you as needed, if you wish.

formation

Car Battery

- etween 20% and 80% of capacity.
- rior to undertaking a long day trip.
- term battery life.
- st charging at 80% battery capacity.

ng a Trip

- greatly increase energy consumption.
- nere is less planning next time.
- ging stations.
- eir powered sites.
- places. Ringing ahead and carrying s provided) may be required.
- for 30 mins vs 3 times for 40 mins).
- hus increasing range.

Charge

		Amps	kW	Add 25kWh	Add 50kWh	Add 75kWh
AC	Trickle	10	2.4	10.4 hrs	20.8 hrs	31.4 hrs
	Trickle	15	3.3	7.6 hrs	15.2 hrs	22.8 hrs
		32	7.2	3.5 hrs	7 hrs	10.5 hrs
DC			25	1 hr	2 hrs	3 hrs
	Fast		50	30 minutes	1 hr	1.5 hr
	Fast		100	15 minutes	30 minutes	45 minutes

Useful Sites and Links

AEVA EV Fact Sheets – Summary Sheet + 2 detailed pages on 50 current and 25 EVs soon to be available in Australia

https://www.aeva.asn.au/battery-electric-vehicle-models-bevs/

- AEVA Vic Branch Page https://www.aeva.asn.au/VIC/ •
- **AEVA Membership Page** https://www.aeva.asn.au/memberships/applications/aeva-membership/
- **AEVA Vic Branch Non Member Email List** https://www.aeva.asn.au/accounts/register/
- Plugshare https://www.plugshare.com/map/australia ٠
- A Better Route Planner https://abetterrouteplanner.com/